European badger habitat requirements in the Netherlands - Combining ecological niche models with neighbourhood analysis

11 September 2018

Piza-Roca, Carme; van 't Zelfde, Maarten; La Haye, Maurice; Jongejans, Eelke; Raes, Niels

European badger populations in the Netherlands suffered strong declines in the 1900’s, becoming endangered in the 1980’s. Despite mitigation actions, recovery of the population has been slow. Here, we use ecological niche modelling, relating 1515 badger sett (burrow) localities to data on topographic, groundwater table, soil type and land-cover variables, to investigate the factors defining badger habitat suitability. Niche modelling of mobile animals such as badgers is challenging, as relevant features that determine habitat suitability surrounding animal sightings or burrow locations are often unaccounted for. In this study, habitat properties of the entire home range of individuals were incorporated via neighbourhood analysis on land-cover variables. The neighbourhood analysis was applied at different spatial scales, to assess maximum model fit at the scale most representative of badger home-range area in the Netherlands, which was approximately 3.6 km2. Our results showed that marine and river clay render highly unsuitable habitat for badgers. Grassland and maize crops presence, typically reported as driving factors, had little effect on badger distribution in the Netherlands. Instead, moderate vegetation cover, remoteness from urban infrastructures and low groundwater tables resulted in optimal conditions. We conclude that food availability is not a limiting factor for badgers in the Netherlands, but rather appropriate soil conditions for sett digging and non-urban landscapes with sufficient cover for hideout determine their distribution. Our predictions indicate suitable areas that are not currently colonized. The results presented have important implications for management and conservation strategies in the Netherlands. Furthermore, we provide a useful general approach for niche modelling of mobile animals.

Doi
10.2981/wlb.00453