Analysing the recolonisation of a highly fragmented landscape by wild boar using a landscape genetic approach
25 April 2019
Rutten, Anneleen; Cox, Karen; Scheppers, Thomas; Vanden Broecke, Bram; Leirs, Herwig; Casaer, JimWild boar are currently one of the most widespread mammals of the world and in many regions populations keep expanding. In Flanders (Belgium), the wild boar has returned since 2006 after almost half a century of absence and numbers are increasing fast. The Flemish landscape is severely fragmented and is one of the most densely populated areas in the world. Understanding the relationship between landscape structures and species biology is the basis of landscape ecology and increases the understanding of factors driving habitat use, recolonisation and expansion. We conducted a landscape genetics study to identify factors driving wild boar expansion in Flanders. A total of 838 DNA-samples collected from the wild boar hunting bag between 2007 and 2016 were genotyped for 140 single nucleotide polymorphisms (SNPs). We show that the wild boar population expansion started from 2 local gene pools while staying relatively genetically distinct, though with some admixture. A third gene pool emerged around 2013 in the northwest coming from the Netherlands and Germany. The landscape genetic analysis revealed that the main factors explaining the spatial genetic pattern are isolation by distance and forest cover which influenced gene flow positively. Forest fragmentation had no significant effect on genetic distances. As human-wildlife conflicts are increasing in line with wild boars’ expanding distribution range, understanding factors driving expansion during recolonisation is essential for assessing the future dispersal of wild boar in Flanders. With a better insight in future dispersal, it will be possible to conduct risk assessments which target more efficient management actions to limit human-wildlife conflicts.