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Appendix 1 
Statistical analysis 
We denote 𝛼𝛼 parameters with a superscript to refers to the stage of the model in which it appears 

whereas; its subscript denotes its order in a partition of real line, increasing from left to right. The 

subscript starts from 0 and ends at 𝑘𝑘 for a 𝑘𝑘-category response. 

We first defined a presence/absence indicator y
(a) = 1[y > 0], where 1[B] is the standard 

notation for a binary random variable that is 1 if B is true and 0 otherwise. In a hierarchical setting, 

we link abundance data y to covariate data x through a latent variable z in the first stage as follows.  

 

(A1)   𝑦𝑦𝑖𝑖
(𝑎𝑎) = 𝑐𝑐 1�𝛼𝛼𝑐𝑐

(1) <  𝓏𝓏𝑖𝑖
(1) < 𝛼𝛼𝑐𝑐+1

(1) �, 𝑐𝑐 = 0,1 

𝓏𝓏𝑖𝑖
(1) =  𝔁𝔁𝒊𝒊𝚻𝚻𝛽𝛽(1) + 𝜃𝜃𝑖𝑖

(1) + ∈1,𝑖𝑖, 

where yi
(a) represents the indicator for presence/absence for grid cell i, c indexes categories, and 

the bracket notation represents the condition for yi
(a) = 1. Specifically, the value of the continuous 

surface 𝓏𝓏𝑖𝑖
(1) must be greater than the lower boundary 𝛼𝛼𝑐𝑐

(1) and less than the upper boundary 𝛼𝛼𝑐𝑐+1
(1)  

with 𝛼𝛼0
(1) = −∞ and 𝛼𝛼2

(1)= ∞. The 𝛼𝛼𝑐𝑐
(1)parameter denote the boundary points on a real line that 

determines the category of 𝑦𝑦 from the continuous 𝑧𝑧.   Consequently, we are only estimating one 

boundary parameter (𝛼𝛼1
(1)) in the first stage. Note that for cells not surveyed, we have no data on 

y. Furthermore, 𝓏𝓏𝑖𝑖
(1)represents a presence-absence surface,  𝓍𝓍𝑖𝑖Τ𝛽𝛽(1) is the fixed effect mean for 

the presence/absence surface expressed as a linear combination of covariates,  𝜃𝜃𝑖𝑖
(1)  is the spatial 

random effect, and (∈1,𝑖𝑖) is the pure error term. Thus, we are modeling presence/absence in the 

first stage.   

In the second stage, we model the observed abundance category (yi) given presence of 

mallards in grid cell i (yi
(a) = 1): 



 (A2)  𝑦𝑦𝑖𝑖|[𝑦𝑦𝑖𝑖
(𝑎𝑎) = 1]  = (𝑐𝑐 + 1) 1 �𝛼𝛼𝑐𝑐

(2) <  𝓏𝓏𝑖𝑖
(2) < 𝛼𝛼𝑐𝑐+1

(2) �, 𝑐𝑐 = 0,1, , … ,𝑘𝑘 − 1 

𝓏𝓏𝑖𝑖
(2) =  𝓍𝓍𝑖𝑖Τ𝛽𝛽(2) + 𝜃𝜃𝑖𝑖

(2) + ∈2,𝑖𝑖. 

where 𝑦𝑦𝑖𝑖|[𝑦𝑦𝑖𝑖
(𝑎𝑎) = 1] represents the indicator for conditional abundance for grid cell i, 𝓏𝓏𝑖𝑖

(2) indicates 

a conditional abundance surface given presence ≥1. The value of the conditional abundance 

surface 𝓏𝓏𝑖𝑖
(2) must be greater than the lower boundary 𝛼𝛼𝑐𝑐

(2) and less than the upper boundary 𝛼𝛼𝑐𝑐+1
(2)  

with 𝛼𝛼0
(2) = −∞ and 𝛼𝛼𝑘𝑘

(2)= ∞. The 𝛼𝛼𝑐𝑐
(2) parameters denote the boundary points on a real line that 

determines the category of 𝑦𝑦 from the continuous 𝑧𝑧. Hence, the leftmost of these boundary points 

should be at -∞ and rightmost at +∞, implying ( 𝛼𝛼0
(2)= -∞ and 𝛼𝛼𝑘𝑘

(2)  = ∞). The yi and xi denote the 

observed abundance category and the p-dimensional vector of available covariates. β(2) is the covariate 

effects on the abundance surfaces. We do not need an intercept term in the regression model to 

ensure the parameters are identifiable. 𝓍𝓍𝑖𝑖Τ𝛽𝛽(1) is the fixed effect mean for the conditional abundance 

surface expressed as a linear combination of covariates,  𝜃𝜃𝑖𝑖
(2)  is the spatial random effect, and 

(∈2,𝑖𝑖) is the pure error term. Thus, we are modeling only presence in the second stage. For each 

stage, the model has three parts: (1) a fixed effect mean expressed as a linear combination of 

covariates(𝓍𝓍𝑖𝑖Τ𝛽𝛽(𝑗𝑗)); (2) a random effect to capture the spatially correlated pattern present in the 𝓏𝓏-

surface (𝜃𝜃𝑖𝑖
(𝑗𝑗)); and, (3) a pure error term accounting for residual variation (∈𝑗𝑗,𝑖𝑖).   

Our dataset included mallard observations collected over multiple surveys and years, so we 

extended the above model into a spatio–temporal setting. We denoted a typical time point as (t1, t2) 

where t1 and t2 represent the year and survey, respectively. The notation yi (t1, t2) was the abundance 

category reported at cell Ai for year t1 and survey t2. Similarly, we modified the notations for 

quantities in Eq. A1 and A2 to indicate their time-dependent characteristics. We focused on analyzing 

dependence between models at different points of time, anticipating temporal dependence across 

surveys as well as years. Mathematically, we expected y (t1, t2) to have temporal association with y 

(t1−1, t2), y (t1+ 1, t2), y (t1, t2− 1) and y (t1, t2+ 1). We denoted temporal dependence in the models 

for 𝓏𝓏
(1) and 𝓏𝓏

(2) through first-order autoregressive (AR) priors on β
(1) and β

(2)
, respectively, as 

follows: 

(Eq. A3)  𝛽𝛽(𝑗𝑗)(𝑡𝑡1, 𝑡𝑡2) =  Γ𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦
(𝑗𝑗) 𝛽𝛽(𝑗𝑗)(𝑡𝑡1 − 1, 𝑡𝑡2) +  Γ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

(𝑗𝑗) 𝛽𝛽(𝑗𝑗)(𝑡𝑡1, 𝑡𝑡2 − 1) +

 𝜂𝜂(𝑗𝑗)(𝑡𝑡1, 𝑡𝑡2), 𝑗𝑗 = 1,2. 

The components of Γyear and Γsurvey represented the AR coefficients for each of the p covariate 

effects across surveys and years, respectfully, in x, while η represented the pure error accounting 

for variation uncorrelated across time.  

We modeled at two temporal scales, within-year (single year) and among-year (combined all 



surveys). Our first objective was to estimate covariate effects on mallard distribution (stage 1) for 

each survey; covariate effects for the conditional abundance for each survey (stage 2); and, 

covariate-specific effects for temporal dependence across surveys (survey effect) and years (year 

effects). Our second objective was to produce spatial maps of random effects for each survey to 

explain how covariates performed among regions within the ARMAV. Our final objective was to 

develop spatial probabilities of mallard abundance across the ARMAV. To achieve this objective, 

we generated maps with the estimated categorical abundance probabilities throughout the ARMAV 

for each survey. Our first and second objectives follow directly from the analysis described in the 

equations above. We accomplished our final objective by expressing the categorical abundance 

probabilities as a function of model parameters. We predicted the probability that grid cell i had 

mallards present with:  

(A4)  𝛲𝛲[𝑦𝑦𝑖𝑖 = 0] =  Φ�𝛼𝛼1
(1) − 𝓍𝓍𝑖𝑖Τ𝛽𝛽(1) − 𝜃𝜃𝑖𝑖

(1)�.  

 For nonzero categories, with 𝑐𝑐 = 0,1, … , k − 1, 

 𝛲𝛲[𝑦𝑦𝑖𝑖 = 𝑐𝑐 + 1] =  Φ�𝓍𝓍𝑖𝑖Τ𝛽𝛽(1) + 𝜃𝜃𝑖𝑖
(1) −  𝛼𝛼1

(1)�  ×  �Φ�𝛼𝛼𝑐𝑐+1
(2) − 𝓍𝓍𝑖𝑖Τ𝛽𝛽(2) − 𝜃𝜃𝑖𝑖

(2)� −

Φ�𝛼𝛼𝑐𝑐
(2)− 𝓍𝓍𝑖𝑖Τ𝛽𝛽(2) − 𝜃𝜃𝑖𝑖

(2)��,   

Hence, given the posterior samples from parameters of β
(j)

 and θ
(j)

we constructed posterior 

maps of abundance probabilities.  

We first evaluated the fit of our six candidate models with Bayesian χ2 goodness of fit p-

values.  Specifically, our approach to evaluating model fit generated a test statistic for each MCMC 

iteration (RB) that asymptotically follows a χ2 distribution under the assumption of model adequacy. 

We then simulated an equal length sample of independent χ2-random variables and determined the 

proportion of times a RB draw is greater than the corresponding χ2-draw (𝑃𝑃[𝑅𝑅𝐵𝐵 >  𝜒𝜒2]) to give our 

Bayesian p-value. In our analysis, we have 25 surveys each with a four-category response variable. 

Consequently, the degrees of freedom (df) of the χ2 distribution was calculated as 25(4 − 1) = 75. 

The spatial random effects play an important role here as they have the ability to compensate for 

potential inadequacy of covariates present in a candidate model.  

For potential concerns regarding the sample size being sufficient for the data analysis. 

Across 25 surveys, we have records from a total of 106 788 cells (there are 10 053 cells in the 

region). So, on an average, each survey contains records from around 4270 cells. The survey for 

Nov 2011 was of minimum sample size – presence-absence records were available from 3288 cells. 

The presence-absence distribution is as follows: 

 

Survey No. cells with No. cells with 



absence presence 

(in any category) 

Nov, 2009 

Dec, 2009 

Early Jan, 

2010 

Late Jan, 

2010 

Nov, 2010 

Dec, 2010 

Early Jan, 

2011 

Late Jan, 

2011 

Nov, 2011 

Dec, 2011 

Early Jan, 

2012 

Late Jan, 

2012 

Nov, 2012 

Dec, 2012 

Early Jan, 

2013 

Late Jan, 

2013 

Nov, 2013 

Dec, 2013 

Early Jan, 

2014 

Nov, 2014 

Dec. 2014 

Early Jan, 

2015 

Nov, 2015 

3502 

3880 

4043 

4846 

4292 

4237 

3604 

3914 

3167 

4395 

4327 

4286 

4075 

4185 

4356 

4319 

4150 

4173 

4246 

4382 

4354 

4413 

4199 

4179 

4368 

181 

209 

66 

221 

168 

139 

125 

128 

122 

205 

186 

250 

174 

168 

211 

254 

180 

167 

78 

100 

115 

88 

140 

126 

199 



Dec, 2015 

Early Jan, 

2016 

 

 

For binary regression, the rule of thumb is to have at least 10 events/covariate where an “event” 

refers to a presence in our model (Peduzzi et al. 1996). The full model has 10 covariates. For most 

of the surveys, the number of cells with presence exceeds that ratio with a large enough margin. 

However, for three surveys (early-January surveys) suffer from small number of presences and fall 

significantly short of that.  

However, the the hierarchical spatio-temporal combined survey-year modeling approach 

links all survey-specific covariate effects to each other through the covariate-specific parameters 

Γ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and Γ𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦. As a result, the posterior distribution of 𝛽𝛽 parameters of any one survey depends 

not only on the data specific to that survey, but, also on the surveys in the preceding and succeeding 

months of the same year as well as the same month of the preceding and succeeding years. 

Marginally, the posterior learning of any parameter gets contribution from entire dataset. From the 

above table, we have a total of 4000 cells with presence across 25 surveys. The total number of 𝛽𝛽-

parameters from all 25 surveys in the 1st stage is 11×25 = 275, resulting in a ratio of about 15 

observations/covariate effect which is acceptable even under more conservative suggestions of 10-

20 events/covariate as in Austin and Steyerberg (2017). All of these 4000 presence locations enter 

the 2nd stage model where again we deal with similar number of parameters. Since the two stages of 

the model are fitted separately, their posterior learning occurs independent of each other. Issues can 

arise if the analysis separately models each survey or move to an even larger set of covariates, small 

number of presences could be an issue. The usual solution for this problem is to regularize the 

coefficients (Pavlou et al. 2015) which, in a hierarchical setting, is equivalent to a lasso (Park and 

Casella 2008) or elastic net prior (Li and Lin 2010) on the 𝛽𝛽 coefficients. 

We also ranked covariate importance for each survey by dividing the posterior mean of each 

covariate effect by corresponding standard deviation (SD). Use of this measure is justified by the 

fact that, under large sample size, the mean and standard deviation of the posterior distribution of 

any regression coefficient approach its maximum likelihood estimation (MLE) and the asymptotic 

standard error of MLE, respectively (Ghosh and Ramamoorthi 2003). In that case, the ratio of 

empirical posterior mean to empirical posterior standard deviation can be viewed as the Bayesian 

equivalent to the t-statistic which is frequently used as a measure of strength of any covariate effect. 
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Appendix 2 

Figure A2.1 Spatial random effects (𝜃) for the presence/absence of dabbling ducks across the Arkansas Mississippi 
Alluvial Valley (ARMAV) for the November 2009 waterfowl survey. Scale of θ explains the performance of 
covariates used in the model. Positive θ values represent cells with more dabbling ducks than expected and 
negative θ values represent cells with less dabbling ducks than predicted. The entire surface of θ values across the 
ARMAV equals 1.0. A correlated spatial pattern is shown, because a smooth gradient of θ values exists, whereas a 
mixed gradient of θ values would represent no spatial pattern present. 
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Figure A2.2 Spatial random effects (𝜃) for the presence/absence of dabbling ducks across the Arkansas 
Mississippi Alluvial Valley (ARMAV) for the December 2009 waterfowl survey. Scale of θ explains the performance 
of covariates used in the model. Positive θ values represent cells with more dabblers than expected and negative 
θ values represent cells with less dabbling ducks than predicted. The entire surface of θ values across the ARMAV 
equals 1.0. A correlated spatial pattern is shown, because a smooth gradient of θ values exists, whereas a mixed 
gradient of θ values would represent no spatial pattern present. 
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Figure A2.3 Spatial random effects (𝜃) for the presence/absence of dabbling ducks across the Arkansas Mississippi 
Alluvial Valley (ARMAV) for the early-January 2010 waterfowl survey. Scale of θ explains the performance of 
covariates used in the model. Positive θ values represent cells with more dabbling ducks than expected and 
negative θ values represent cells with less dabbling ducks than predicted. The entire surface of θ values across the 
ARMAV equals 1.0. A correlated spatial pattern is shown, because a smooth gradient of θ values exists, whereas a 
mixed gradient of θ values would represent no spatial pattern present. 
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Figure A2.4 Spatial random effects (𝜃) for the presence/absence of dabbling ducks across the Arkansas Mississippi 
Alluvial Valley (ARMAV) for the late-January 2010 waterfowl survey, from the full within-year model. Scale of 
θ explains the performance of covariates used in the model. Positive θ values represent cells with more dabbling 
ducks than expected and negative θ values represent cells with less dabbling ducks than predicted. The entire 
surface of θ values across the ARMAV equals 1.0. A correlated spatial pattern is shown, because a smooth gradient 
of θ values exists, whereas a mixed gradient of θ values would represent no spatial pattern present. 

L
at

it
u
d
e 

Longitude 



Figure A2.5 Spatial random effects (𝜃) for the presence/absence of dabbling ducks across the Arkansas Mississippi 
Alluvial Valley (ARMAV) for the November 2010 waterfowl survey. Scale of θ explains the performance of 
covariates used in the model. Positive θ values represent cells with more dabbling ducks than expected and 
negative θ values represent cells with less dabbling ducks than predicted. The entire surface of θ values across the 
ARMAV equals 1.0. A correlated spatial pattern is shown, because a smooth gradient of θ values exists, whereas a 
mixed gradient of θ values would represent no spatial pattern present. 
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Figure A2.6 Spatial random effects (𝜃) for the presence/absence of dabbling ducks across the Arkansas Mississippi 
Alluvial Valley (ARMAV) for the December 2010 waterfowl survey. Scale of θ explains the performance of 
covariates used in the model. Positive θ values represent cells with more dabbling ducks than expected and 
negative θ values represent cells with less dabbling ducks than predicted. The entire surface of θ values across the 
ARMAV equals 1.0. A correlated spatial pattern is shown, because a smooth gradient of θ values exists, whereas a 
mixed gradient of θ values would represent no spatial pattern present. 
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Figure A2.7 Spatial random effects (𝜃) for the presence/absence of dabbling ducks across the Arkansas Mississippi 
Alluvial Valley (ARMAV) for the early-January 2011 waterfowl survey. Scale of θ explains the performance of 
covariates used in the model. Positive θ values represent cells with more dabbling ducks than expected and 
negative θ values represent cells with less dabbling ducks than predicted. The entire surface of θ values across the 
ARMAV equals 1.0. A correlated spatial pattern is shown, because a smooth gradient of θ values exists, whereas a 
mixed gradient of θ values would represent no spatial pattern present. 
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Figure A2.8 Spatial random effects (𝜃) for the presence/absence of dabbling ducks across the Arkansas Mississippi 
Alluvial Valley (ARMAV) for the late-January 2011 waterfowl survey, from the habitat within-year model. Scale of 
θ explains the performance of covariates used in the model. Positive θ values represent cells with more dabbling 
ducks than expected and negative θ values represent cells with less dabbling ducks than predicted. The entire 
surface of θ values across the ARMAV equals 1.0. A correlated spatial pattern is shown, because a smooth gradient 
of θ values exists, whereas a mixed gradient of θ values would represent no spatial pattern present. 
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Figure A2.9 Spatial random effects (𝜃) for the presence/absence of dabbling ducks across the Arkansas Mississippi 
Alluvial Valley (ARMAV) for the November 2011 waterfowl survey, from the habitat within-year model. Scale of 
θ explains the performance of covariates used in the model. Positive θ values represent cells with more dabbling 
ducks than expected and negative θ values represent cells with less dabbling ducks than predicted. The entire 
surface of θ values across the ARMAV equals 1.0. A correlated spatial pattern is shown, because a smooth gradient 
of θ values exists, whereas a mixed gradient of θ values would represent no spatial pattern present. 

L
at

it
u
d
e 

Longitude 



Figure A2.10 Spatial random effects (𝜃) for the presence/absence of dabbling ducks across the Arkansas 
Mississippi Alluvial Valley (ARMAV) for the December 2011 waterfowl survey, from the habitat within-year model. 
Scale of 
θ explains the performance of covariates used in the model. Positive θ values represent cells with more dabbling 
ducks than expected and negative θ values represent cells with less dabbling ducks than predicted. The entire 
surface of θ values across the ARMAV equals 1.0. A correlated spatial pattern is shown, because a smooth gradient 
of θ values exists, whereas a mixed gradient of θ values would represent no spatial pattern present. 
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Figure A2.11 Spatial random effects (𝜃) for the presence/absence of dabbling ducks across the Arkansas 
Mississippi Alluvial Valley (ARMAV) for the early-January 2012 waterfowl survey, from the habitat within-year 
model. Scale of θ explains the performance of covariates used in the model. Positive θ values represent cells with 
more dabbling ducks than expected and negative θ values represent cells with less dabbling ducks than predicted. 
The entire surface of θ values across the ARMAV equals 1.0. A correlated spatial pattern is shown, because a 
smooth gradient of θ values exists, whereas a mixed gradient of θ values would represent no spatial pattern 
present. 
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Figure A2.12 Spatial random effects (𝜃) for the presence/absence of dabbling ducks across the Arkansas 
Mississippi Alluvial Valley (ARMAV) for the late-January 2012 waterfowl survey, from the habitat within-year 
model. Scale of θ explains the performance of covariates used in the model. Positive θ values represent cells with 
more dabbling ducks than expected and negative θ values represent cells with less dabbling ducks than predicted. 
The entire surface of θ values across the ARMAV equals 1.0. A correlated spatial pattern is shown, because a 
smooth gradient of θ values exists, whereas a mixed gradient of θ values would represent no spatial pattern 
present. 
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Figure A2.13 Spatial random effects (𝜃) for the presence/absence of dabbling ducks across the Arkansas 
Mississippi Alluvial Valley (ARMAV) for the November 2012 waterfowl survey. Scale of θ explains the performance 
of covariates used in the model. Positive θ values represent cells with more dabbling ducks than expected and 
negative θ values represent cells with less dabbling ducks than predicted. The entire surface of θ values across the 
ARMAV equals 1.0. A correlated spatial pattern is shown, because a smooth gradient of θ values exists, whereas a 
mixed gradient of θ values would represent no spatial pattern present. 
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Figure A2.14 Spatial random effects (𝜃) for the presence/absence of dabbling ducks across the Arkansas 
Mississippi Alluvial Valley (ARMAV) for the December 2012 waterfowl survey. Scale of θ explains the performance 
of covariates used in the model. Positive θ values represent cells with more dabbling ducks than expected and 
negative θ values represent cells with less dabbling ducks than predicted. The entire surface of θ values across the 
ARMAV equals 1.0. A correlated spatial pattern is shown, because a smooth gradient of θ values exists, whereas a 
mixed gradient of θ values would represent no spatial pattern present. 
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Figure A2.15 Spatial random effects (𝜃) for the presence/absence of dabbling ducks across the Arkansas 
Mississippi Alluvial Valley (ARMAV) for the early-January 2013 waterfowl survey, from the habitat within-year 
model. Scale of θ explains the performance of covariates used in the model. Positive θ values represent cells with 
more dabbling ducks than expected and negative θ values represent cells with less dabbling ducks than predicted. 
The entire surface of θ values across the ARMAV equals 1.0. A correlated spatial pattern is shown, because a 
smooth gradient of θ values exists, whereas a mixed gradient of θ values would represent no spatial pattern 
present. 
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Figure A2.16 Spatial random effects (𝜃) for the presence/absence of dabbling ducks across the Arkansas 
Mississippi Alluvial Valley (ARMAV) for the late-January 2013 waterfowl survey. Scale of θ explains the 
performance of covariates used in the model. Positive θ values represent cells with more dabbling ducks than 
expected and negative θ values represent cells with less dabbling ducks than predicted. The entire surface of θ 
values across the ARMAV equals 1.0. A correlated spatial pattern is shown, because a smooth gradient of θ values 
exists, whereas a mixed gradient of θ values would represent no spatial pattern present. 
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Figure A2.17 Spatial random effects (𝜃) for the presence/absence of dabbling ducks across the Arkansas 
Mississippi Alluvial Valley (ARMAV) for the November 2013 waterfowl survey, from the full within-year model. 
Scale of θ explains the performance of covariates used in the model. Positive θ values represent cells with more 
dabbling ducks than expected and negative θ values represent cells with less dabbling ducks than predicted. The 
entire surface of θ values across the ARMAV equals 1.0. A correlated spatial pattern is shown, because a smooth 
gradient of θ values exists, whereas a mixed gradient of θ values would represent no spatial pattern present. 
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Figure A2.18 Spatial random effects (𝜃) for the presence/absence of dabbling ducks across the Arkansas 
Mississippi Alluvial Valley (ARMAV) for the December 2013 waterfowl survey, from the full within-year model. 
Scale of θ explains the performance of covariates used in the model. Positive θ values represent cells with more 
dabbling ducks than expected and negative θ values represent cells with less dabbling ducks than predicted. The 
entire surface of θ values across the ARMAV equals 1.0. A correlated spatial pattern is shown, because a smooth 
gradient of θ values exists, whereas a mixed gradient of θ values would represent no spatial pattern present. 
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Figure A2.19 Spatial random effects (𝜃) for the presence/absence of dabbling ducks across the Arkansas 
Mississippi Alluvial Valley (ARMAV) for the early-January 2014 waterfowl survey. Scale of θ explains the 
performance of covariates used in the model. Positive θ values represent cells with more dabbling ducks than 
expected and negative θ values represent cells with less dabbling ducks than predicted. The entire surface of θ 
values across the ARMAV equals 1.0. A correlated spatial pattern is shown, because a smooth gradient of θ values 
exists, whereas a mixed gradient of θ values would represent no spatial pattern present. 
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Figure A2.20 Spatial random effects (𝜃) for the presence/absence of dabbling ducks across the Arkansas 
Mississippi Alluvial Valley (ARMAV) for the November 2014 waterfowl survey, from the habitat within-year model. 
Scale of θ explains the performance of covariates used in the model. Positive θ values represent cells with more 
dabbling ducks than expected and negative θ values represent cells with less dabbling ducks than predicted. The 
entire surface of θ values across the ARMAV equals 1.0. A correlated spatial pattern is shown, because a smooth 
gradient of θ values exists, whereas a mixed gradient of θ values would represent no spatial pattern present. 
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Figure A2.21 Spatial random effects (𝜃) for the presence/absence of dabbling ducks across the Arkansas 
Mississippi Alluvial Valley (ARMAV) for the December 2014 waterfowl survey. Scale of θ explains the performance 
of covariates used in the model. Positive θ values represent cells with more dabbling ducks than expected and 
negative θ values represent cells with less dabbling ducks than predicted. The entire surface of θ values across the 
ARMAV equals 1.0. A correlated spatial pattern is shown, because a smooth gradient of θ values exists, whereas a 
mixed gradient of θ values would represent no spatial pattern present. 
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Figure A2.22 Spatial random effects (𝜃) for the presence/absence of dabbling ducks across the Arkansas 
Mississippi Alluvial Valley (ARMAV) for the early-January 2015 waterfowl survey, from the habitat within-year 
model. Scale of θ explains the performance of covariates used in the model. Positive θ values represent cells with 
more dabbling ducks than expected and negative θ values represent cells with less dabbling ducks than predicted. 
The entire surface of θ values across the ARMAV equals 1.0. A correlated spatial pattern is shown, because a 
smooth gradient of θ values exists, whereas a mixed gradient of θ values would represent no spatial pattern 
present. 
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Figure A2.23 Spatial random effects (𝜃) for the presence/absence of dabbling ducks across the Arkansas 
Mississippi Alluvial Valley (ARMAV) for the November 2015 waterfowl survey. Scale of θ explains the performance 
of covariates used in the model. Positive θ values represent cells with more dabbling ducks than expected and 
negative θ values represent cells with less dabbling ducks than predicted. The entire surface of θ values across the 
ARMAV equals 1.0. A correlated spatial pattern is shown, because a smooth gradient of θ values exists, whereas a 
mixed gradient of θ values would represent no spatial pattern present. 
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Figure A2.24 Spatial random effects (𝜃) for the presence/absence of dabbling ducks across the Arkansas 
Mississippi Alluvial Valley (ARMAV) for the December 2015 waterfowl survey. Scale of θ explains the performance 
of covariates used in the model. Positive θ values represent cells with more dabbling ducks than expected and 
negative θ values represent cells with less dabbling ducks than predicted. The entire surface of θ values across the 
ARMAV equals 1.0. A correlated spatial pattern is shown, because a smooth gradient of θ values exists, whereas a 
mixed gradient of θ values would represent no spatial pattern present. 
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Figure A2.25 Spatial random effects (𝜃) for the presence/absence of dabbling ducks across the Arkansas 
Mississippi Alluvial Valley (ARMAV) for the early-January 2016 waterfowl survey, from the full within-year model. 
Scale of θ explains the performance of covariates used in the model. Positive θ values represent cells with more 
dabbling ducks than expected and negative θ values represent cells with less dabbling ducks than predicted. The 
entire surface of θ values across the ARMAV equals 1.0. A correlated spatial pattern is shown, because a smooth 
gradient of θ values exists, whereas a mixed gradient of θ values would represent no spatial pattern present. 
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