## Wildlife Biology

## WLB-00708

Fukasawa, K., Osada, Y. and Iijima, H. 2020. Is harvest size a valid indirect measure of abundance for evaluating the population size of game animals using harvest-based estimation? – Wildlife Biology 2020: wlb.00708

## Appendix 1

Figure A1. Capture effort for data-generating scenarios.



- Scenario 1
- △ Scenario 2
- + Scenario 3
- × Scenario 4
- ♦ Scenario 5
- ∇ Scenario 6
- Scenario 7

Figure A2. Harvest size generated under seven scenarios. Lines and error bars indicate mean and middle 90% range over 100 iterations, respectively.



Figure A3. True population sizes generated under seven scenarios. Lines and error bars indicate means and middle 90% range over 100 iterations, respectively.



## Appendix 2

Derivation of the marginal likelihood and smoothed distribution of state variables by recursive Bayesian filtering

Marginal likelihood,  $p(C_{1:T} | \theta)$ , can be factorized sequentially:

$$p(C_{1:T}|\boldsymbol{\theta}) = p(C_1|\boldsymbol{\theta}) \prod_{t=2}^{T} p(C_t|C_{1:t-1},\boldsymbol{\theta})$$
 (A1)

where T is the last time step t. We used vector notations for harvest size,  $C_{1:t} = \{C_1, C_2, ..., C_t\}$ . The observation probability of initial harvest size,  $p(C_1 | \theta)$ , is derived by integrating out  $S_1$  from the product of the observation process distribution (Eq. 7) at t = 1,  $p(C_1 | S_1, \theta)$ , and prior distribution  $p(S_1)$ ;

$$p(C_1|\mathbf{\theta}) = \sum_{S_1=0}^{S_{max}} p(C_1|S_1,\mathbf{\theta})p(S_1).$$

where  $S_{max}$  is the maximum possible value for keeping the estimation procedure tractable and should be a sufficiently large value that does not affect the estimation.

The conditional probability,  $p(C_t \mid C_{1:t-1}, \mathbf{\theta})$ , in Eq. A1 is a probability that we observe  $C_t$  given the previous observations of  $C_{1:t-1}$ . It can be written as the expectation of the observation process distribution (Eq. 7),  $p(C_t \mid S_t, \mathbf{\theta})$ , over possible values of  $S_t$  given  $C_{1:t-1}$ ;

$$p(C_t|C_{1:t-1},\boldsymbol{\theta}) = \sum_{S_t=0}^{S_{max}} p(C_t|S_t,\boldsymbol{\theta}) p(S_t|C_{1:t-1},\boldsymbol{\theta}).$$

The conditional distribution of the latent state given previous observations,  $p(S_t | C_{1:t-1}, \theta)$ , is calculated by recursive filtering.

Recursive filtering is an online algorithm to calculate  $p(S_t \mid C_{1:t-1}, \theta)$  for each t. In the process, the state prediction at t given the observation up to t-1 (prediction step) and updated posterior of state t incorporating the observation at t (update step) are operated recursively. The pseudocode of the algorithm is as follows.

\_\_\_\_\_

Set prior of  $S_1$ 

$$\texttt{calculate} \ \ p(S_1|\mathcal{C}_1, \pmb{\theta}) = \frac{p(\mathcal{C}_1|S_1, \pmb{\theta})p(S_1)}{\sum_{S_1=0}^{S_{max}} p(\mathcal{C}_1|S_1, \pmb{\theta})p(S_1)} \\ \texttt{\#update}$$

for t=2 to T do

calculate 
$$p(S_t|C_{1:t-1}, \mathbf{\theta}) = \sum_{S_{t-1}=0}^{S_{max}} p(S_t|S_{t-1}, \mathbf{\theta}) p(S_{t-1}|C_{t-1}, \mathbf{\theta})$$
 #prediction

calculate 
$$p(S_t|C_{1:t}, \mathbf{\theta}) = \frac{p(C_t|S_t, \mathbf{\theta})p(S_t|C_{1:t-1}, \mathbf{\theta})}{\sum_{S_t=0}^{S_{max}} p(C_t|S_t, \mathbf{\theta})p(S_t|C_{1:t-1}, \mathbf{\theta})}$$
 #update

end do

\_\_\_\_\_

Note that output of the previous update step,  $p(S_{t-1} \mid C_{1:t-1}, \mathbf{\theta})$ , is used for the prediction step at t. The state process distribution,  $p(S_t \mid S_{t-1}, \mathbf{\theta})$ , is defined in Eq. 6. The maximum a posteriori estimate of  $\mathbf{\theta}$  is obtained by maximizing the log marginal likelihood,  $\ln(p(C_{1:T} \mid \mathbf{\theta}))$ .

After parameter estimates,  $\hat{\mathbf{\theta}} = (\hat{r}, \hat{\varphi})$ , are obtained, the smoothed distribution of  $S_t$ ,  $p(S_t \mid C_{1:T}, \hat{\mathbf{\theta}})$  and initial population size  $N_1$ ,  $p(N_1 \mid C_{1:T}, \hat{\mathbf{\theta}})$  are derived via forward-backward smoothing. In this smoothing procedure, the smoothed distribution at the last time step T,  $p(S_T \mid C_{1:T}, \hat{\mathbf{\theta}})$ , is calculated by recursive filtering, as described above, and smoothing at each time step t is executed by descending sequence (t = T-1, T-2, ..., 1) according to the following equation:

$$p(S_t|C_{1:T},\widehat{\boldsymbol{\theta}}) = p(S_t|C_{1:t},\widehat{\boldsymbol{\theta}}) \sum_{S_{t+1}=0}^{S_{max}} \frac{p(S_{t+1}|C_{1:T},\widehat{\boldsymbol{\theta}})p(S_{t+1}|S_t,\widehat{\boldsymbol{\theta}})}{p(S_{t+1}|C_{1:t},\widehat{\boldsymbol{\theta}})}.$$

Note that  $p(S_t \mid C_{1:t}, \hat{\boldsymbol{\theta}})$  and  $p(S_{t+1} \mid C_{1:t}, \hat{\boldsymbol{\theta}})$  are outputs of the update step and prediction step of recursive filtering, respectively.  $p(S_{t+1} \mid C_{1:T}, \hat{\boldsymbol{\theta}})$  is the smoothed distribution of  $S_{t+1}$  calculated in the previous step of smoothing.  $p(N_1 \mid C_{1:T}, \hat{\boldsymbol{\theta}})$  is obtained from the smoothed distribution of  $S_1$  as follows:

$$p(N_1|C_{1:T},\widehat{\boldsymbol{\theta}}) = \sum_{S_1=0}^{S_{max}} \frac{p(S_1|C_{1:T},\widehat{\boldsymbol{\theta}})p(S_1|N_1,\widehat{\boldsymbol{\theta}})}{p(S_1)}.$$

Note that  $p(S_1 | N_1, \hat{\boldsymbol{\theta}})$  is identical to equation 1. The point estimate of  $N_1$ ,  $N_1$ , is defined as the expected value of  $N_1$  as follows:

$$\widehat{N}_1 = \sum_{N_1=0}^{S_{max}} N_1 \, p(N_1 | C_{1:T}, \widehat{\boldsymbol{\theta}}).$$