Wildlife Biology

WLB-00464

Kämmerle, J.-L. and Storch, I. 2019. Predation, predator control and grouse populations: a review. - Wildlife Biology 2019: wlb.00464

Appendix 1

Table A1. List of studies investigating the effects of differences in predator abundance on the development grouse populations and their reproductive success. The country of the study, the grouse species for which parameters were recorded, the predator species involved and the spatial scale of the analysis are provided.

Study	Country	Grouse species	Predator	Spatial scales
Lindström et al. 1994	Sweden	black grouse capercaillie hazel grouse	red fox	single site regional nation-wide
Kurki et al. 1997	Finland	black grouse capercaillie	red fox pine marten	regional nation-wide
Smedshaug et al. 1999	Norway	black grouse capercaillie	red fox	regional single-site
Thirgood et al. 2000a	UK	red grouse	hen harrier	single site
Thirgood et al. 2000b	UK	red grouse	hen harrier peregrine falcon	single site
Baines et al. 2004	UK	capercaillie	red fox carrion crow raptors	several sites (regional)
Manzer and Hannon 2005	Canada	sharp-tailed grouse	corvids	regional
Coates and Delehanty 2010	USA	sage grouse	common raven american badger	several sites (local)
Ludwig et al. 2010	Finland	black grouse	red fox pine marten stoat weasel	several sites (regional)
Bui et al. 2010	USA	sage grouse	common raven	several sites (local)
Baxter et al. 2013	USA	sage grouse.	red fox coyote	single site
Tornberg et al. 2013	Finland	capercaillie, black grouse, hazel grouse	goshawk	several sites (regional)
Baines et al. 2016	UK	capercaillie.	red fox pine marten	several sites (regional)
Lyly et al. 2016	Finland	black grouse capercaillie	golden eagle pine marten	nation-wide
Kämmerle et al. 2017	Germany	capercaillie	red fox	regional

Table A2. List of studies describing the effects of removing predators on grouse population parameters that were not included into the quantitative analysis. The country of the study, the grouse species for which parameters were recorded, the predator species removed, the study design (site design and number; method) as well as the timeframe of the experiments are provided. The final column provides the reasons for not including the study in the analysis. *Study types were C & T for studies featuring control and treatment sites; B - A for studies employing a before after design.

Study	Country	Grouse species	Predator	Design* (Sites)	Timeframe	$\overline{x} \ln(X_e/X_c)$	Reasons for exclusion
Erikstad et al. 1982	Norway	willow ptarmigan	hooded crow	single (B - A)	1975–1978	-	No real predator removal study. One breeding pair of crows removed in one year of the study (1978).
Smedshaug 2001	Norway	willow ptarmigan	red fox pine marten 8 raptors	time-series of regional hunting bag data	1885–1914	-	No suitable data for analysis due to scale of study
Baines et al. 2004	UK	capercaillie	red fox carrion crow	multiple, removal: single	1991–2001	-	No numerical data; removal not central focus of the study; removal site equals Summers et al. 2004.
Summers et al. 2004	UK	capercaillie black grouse	red fox carrion crow	single (B – A)	1989–1999	0.981	Predator control confounded with precipitation patterns that were related to reproductive success in a single site design.
Ludwig et al. 2017	UK	red grouse	red fox hen harrier carrion crow stoat weasel	single (B – A)	1992–2015	0.936	Predator removal confounded with grouse habitat management and diversionary feeding of raptors in a single site design.

Table A3. Model selection results. Note that the variable 'Type (A-F)', representing the type of grouse population parameters was held fixed in model selection.

Intercept	Habitat	Study design	Type (A-F)	DF	logLik	ΔAICc	weight
0.219			+	7	-29.838	0.00	0.731
0.278		+	+	8	-29.778	2.70	0.189
0.302	+		+	9	-29.366	4.84	0.065
0.381	+	+	+	10	-29.262	7.74	0.015

References

- Baines, D. et al. 2004. Capercaillie breeding success in relation to forest habitat and predator abundance. J. Appl. Ecol. 41: 59–71.
- Baines, D. et al. 2016. Increased mammalian predators and climate change predict declines in breeding success and density of capercaillie *tetrao urogallus*, an old stand specialist, in fragmented Scottish forests. Biodivers. Conserv. 25: 2171–2186.
- Baxter, R. J. et al. 2013. Survival of resident and translocated greater sage-grouse in Strawberry Valley, Utah: a 13-year study. J. Wildl. Manage. 77: 802–811.
- Bui, T.-V. D. et al. 2010. Common raven activity in relation to land use in western Wyoming: implications for greater sage-grouse reproductive success. Condor 112: 65–78.
- Coates, P. S. and Delehanty, D. J. 2010. Nest predation of greater sage-grouse in relation to microhabitat factors and predators. J. Wildl. Manage. 74: 240–248.
- Erikstad, K. E. et al. 1982. Territorial hooded crows as predators on willow ptarmigan nests. J. Wildl. Manage. 46: 109–114.
- Kämmerle, J.-L. et al. 2017. Range loss of a threatened grouse species is related to the relative abundance of a mesopredator. Ecosphere 8: e01934.
- Kurki, S. et al. 1997. Breeding success of black grouse and capercaillie in relation to mammalian predator densities on two spatial scales. Oikos 79: 301–310.
- Lindström, E. R. et al. 1994. Disease reveals the predator: sarcoptic mange, red fox predation, and prey populations. Ecology 75: 1042–1049.
- Ludwig, G. X. et al. 2010. Individual and environmental determinants of daily black grouse nest survival rates at variable predator densities. Ann. Zool. Fenn. 47: 387–397.
- Ludwig, S. C. et al. 2017. Long-term trends in abundance and breeding success of red grouse and hen harriers in relation to changing management of a Scottish grouse moor. Wildl. Biol. 2017: wlb.00246.
- Lyly, M. S. et al. 2016. Guardian or threat: does golden eagle predation risk have cascading effects on forest grouse? Oecologia 182: 487–498.
- Manzer, D. L. and Hannon, S. J. 2005. Relating grouse nest success and corvid density to habitat: a multi-scale approach. J. Wildl. Manage. 69: 110–123.
- Parker, H. 1984. Effect of corvid removal on reproduction of willow ptarmigan and black grouse. J. Wildl. Manage. 48: 1197–1205.
- Smedshaug, C. A. 2001. Was high grouse bag in early 20th century Norway due to a program for extermination of small game predators? Ecography 24: 579–587.
- Smedshaug, C. A. et al. 1999. The effect of a natural reduction of red fox *Vulpes vulpes* on

- small game hunting bags in Norway. Wildl. Biol. 5: 157-166.
- Summers, R. W. et al. 2004. An experimental study of the effects of predation on the breeding productivity of capercaillie and black grouse. J. Appl. Ecol. 41: 513–525.
- Thirgood, S. J. et al. 2000a. Habitat loss and raptor predation: disentangling long- and short-term causes of red grouse declines. Proc. R. Soc. B 267: 651–656.
- Thirgood, S. J. et al. 2000b. Raptor predation and population limitation in red grouse. J. Anim. Ecol. 69: 504–516.
- Tornberg, R. et al. 2013. Coupling in goshawk and grouse population dynamics in Finland. Oecologia 171: 863–872.