The Dynamic Nature of Territoriality, Transience, and Biding in an Exploited Coyote Population

6 September 2017

Morin, Dana; Kelly, Marcella

Ideal despotic distribution theory and resource dispersion theory predict that individuals in populations of territorial species arrange themselves in space according to dominance and resource dispersion. When available territories are saturated, this can result in competition for preferred territories. Recently, transience in coyote populations was suggested as an advantageous life history strategy, even though transients may incur higher mortality and do not typically contribute reproductively to the population at that time. Here we assess potential types of biding, or awaiting better territory opportunities, in a highly-exploited coyote population in Virginia, USA. We used relocation data from coyotes collared from July 2011 – March 2014 to classify residents and transients based on a 95% home range area over a 3-month moving window. We estimated home range stability as the distance between successive activity centers and compared it between subadults and adults. We used home range stability relative to home range area to identify extra-territorial excursions and territory turnover, or resident shifts into adjacent territories. Some coyotes adhered to the traditional form of transience, occupying very large home ranges or biding areas overlapping several resident territories, until a territory became vacant. Conversely, other individuals displayed evidence of resident territory turnover, suggesting individuals may use low quality territories as biding areas, waiting for better quality territories to become vacant. We suggest this biding population provides the capacity for rapid compensatory immigration. In response to high levels of mortality in exploited coyote populations, removal of individuals from territories may result in immediate colonization by another individual, confounding efforts to reduce overall coyote density. Thus, transience and biding may regulate population density and be a potentially advantageous life history strategy and may have implications for management of saturated populations of social predators.

Doi
10.2981/wlb.00335